Diagnostic Error in Medicine

Analysis of 583 Physician-Reported Errors

Gordon D. Schiff, MD; Omar Hasan, MD; Seijeoung Kim, RN, PhD; Richard Abrams, MD; Karen Cosby, MD; Bruce L. Lambert, PhD; Arthur S. Elstein, PhD; Scott Hasler, MD; Martin L. Kabongo, MD; Nela Krosnjar; Richard Odwazny, MBA; Mary F. Wisniewski, RN; Robert A. McNutt, MD

Background: Missed or delayed diagnoses are a common but understudied area in patient safety research. To better understand the types, causes, and prevention of such errors, we surveyed clinicians to solicit perceived cases of missed and delayed diagnoses.

Methods: A 6-item written survey was administered at 20 grand rounds presentations across the United States and by mail at 2 collaborating institutions. Respondents were asked to report 3 cases of diagnostic errors and to describe their perceived causes, seriousness, and frequency.

Results: A total of 669 cases were reported by 310 clinicians from 22 institutions. After cases without diagnostic errors or lacking sufficient details were excluded, 583 remained. Of these, 162 errors (28%) were rated as major, 241 (41%) as moderate, and 180 (31%) as minor or insignificant. The most common missed or delayed diagnoses were pulmonary embolism (26 cases [4.5% of total]), drug reactions or overdose (26 cases [4.5%]), lung cancer (23 cases [3.9%]), colorectal cancer (19 cases [3.3%]), acute coronary syndrome (18 cases [3.1%]), breast cancer (18 cases [3.1%]), and stroke (15 cases [2.6%]). Errors occurred most frequently in the testing phase (failure to order, report, and follow-up laboratory results) (44%), followed by clinician assessment errors (failure to consider and outweighing competing diagnosis) (32%), history taking (10%), physical examination (10%), and referral or consultation errors and delays (3%).

Conclusions: Physicians readily recalled multiple cases of diagnostic errors and were willing to share their experiences. Using a new taxonomy tool and aggregating cases by diagnosis and error type revealed patterns of diagnostic failures that suggested areas for improvement. Systematic solicitation and analysis of such errors can identify potential preventive strategies.

Arch Intern Med. 2009;169(20):1881-1887

Errors related to delayed or missed diagnoses are a frequent and underappreciated cause of patient injury.1-5 While the exact prevalence of diagnostic error remains unknown, data from autopsy series spanning several decades conservatively and consistently reveal error rates of 10% to 15%.6-9 Such errors are also the leading cause of medical malpractice litigation, accounting for twice as many alleged and settled cases as medication errors.10,11 Despite this, few studies have examined diagnostic errors in detail, in part because of the challenges in reliably identifying and analyzing them.3,12

Given the inherently unpredictable and varying disease presentations and the limitations of diagnostic testing, clinicians are justifiably reluctant, and often defensive, about judging their own or colleagues’ potentially missed or delayed diagnoses. Under these circumstances, one approach for identifying and understanding this type of error is to anonymously survey clinicians about cases in which they personally committed or observed what they considered to be diagnostic errors. As part of a multiyear Agency for Healthcare Research and Quality–funded patient safety grant, the Diagnostic Error Evaluation and Research (DEER) project, we collected such reports by surveying physicians from multiple hospitals across several states.

The objectives of this study were 3-fold: to identify commonly missed diagnoses, to delineate recognizable patterns and
themes from reported cases, and to apply the DEER taxonomy tool for analyzing cases. The development and pilot testing of this tool have been described previously, and the tool has been used in other research studies on diagnostic error.3,13

DEFINITION OF DIAGNOSTIC ERROR

We defined diagnostic error as any mistake or failure in the diagnostic process leading to a misdiagnosis, a missed diagnosis, or a delayed diagnosis. This definition could include any failure in timely access to care; elicitation or interpretation of symptoms, signs, or laboratory results; formulation and weighing of differential diagnosis; and timely follow-up and specialty referral or evaluation.3,13

SURVEY DESCRIPTION

After pilot testing with 10 physicians with iterative revisions, we anonymously administered a 6-item survey (Figure 1) to solicit reports and descriptions of perceived diagnostic errors from physicians. Participating physicians were asked to review the definition in the preceding paragraph and then to describe 3 clinically significant diagnostic errors that they have seen or committed. Respondents were then asked to describe the (correct) diagnosis that should have been made, the error or failure that occurred, and the factors that contributed to the occurrence of the error.

For each error identified in this way, we asked respondents to rate its clinical impact or outcome: (1) no impact (no impact at all); (2) minor (patient inconvenience or dissatisfaction); (3) moderate (short-term morbidity, increased length of stay, need for higher level of care, or invasive procedure); or (4) major (death, permanent disability, or near life-threatening event). We asked respondents to assess how often they had seen this type of error: (1) rarely (1 or 2 cases seen); (2) infrequently (1 case seen every few years); (3) occasionally (a few cases seen each year); or (4) commonly (several cases seen each month).

SURVEY ADMINISTRATION

We surveyed a convenience sample of physicians, including general internists, medical specialists, and emergency physicians in 2 ways: either by mail, through institutional (internal) mailings to internists and emergency physicians at 2 participating academic medical centers, or by distributing questionnaires to be filled out during medical grand rounds presentations on the topic of diagnosis errors, given at 20 community and smaller teaching hospitals across the United States. For mailed surveys, physicians were given unlimited time to respond, while for grand rounds presentations, 10 to 12 minutes were allotted for survey completion. We did not have access to patients’ medical records; therefore, case descriptions relied solely on information provided without attempt to verify or clarify the reported information from other sources such as the reported cases’ medical records.

ANALYSIS

All cases were entered into a Microsoft Access database by a research assistant to ensure the anonymity of respondents whose handwriting might be recognizable. Diagnoses were coded and grouped, and descriptive statistics were analyzed. Cases were analyzed by final diagnosis, contributing factors, who made the error (self, others, or both), clinical impact or outcome (none, minor, moderate, or major), frequency (rare, infrequent, occasional, or common), and demographics of the reporting physician (specialty and years in practice).

Study investigators reviewed case descriptions, and 2 physician investigators (G.D.S. and O.H.) discussed ambiguous cases to determine whether or not a diagnostic error had occurred. Cases that described only a medication error, did not contain sufficient information to analyze reliably, or were judged not to contain an identifiable diagnostic error were excluded from this report of our study. We applied the DEER taxonomy tool to classify included cases according to the location and type of error in the diagnostic process. Classification was a 2-stage process that first involved identifying broadly where (ie, at what step in the diagnostic process) a problem had occurred, followed by a determination of what that problem was (ie, what went wrong in that step). We relied entirely on respondents’ descriptions in the “What went wrong?” and “Why did it happen?” sections of the survey to assign DEER category and refrained from making judgments about reporting physicians’ accuracy and judgment. In instances in which multiple breakdowns in the diagnostic process were responsible for the eventual diagnostic failure, the step judged to have made the largest contribution to failure was used to assign a primary DEER category, while others were coded as secondary or tertiary. A random 10% sample of 60 cases was independently reviewed by 2 study investigators (G.D.S. and O.H.) to assess the interrater reliability of the DEER classification.

Differences in proportions were evaluated with the χ² test using SAS version 9.1 (SAS Institute Inc, Cary, North Carolina). No identifiable patient information was submitted with the survey responses, and participating physicians gave their consent for study inclusion. This study was approved by the institutional review board of Cook County Hospital and Rush University, Chicago, Illinois.
A total of 669 cases were reported by 310 survey respondents, 243 (36%) via mail and 426 (64%) during grand rounds presentations. Response rates varied by survey method, ranging from a low of 10% to 20% for mailed surveys in certain medical subspecialty divisions to 70% to 90% for selected general medicine divisions and grand rounds participants. Each respondent was asked to report up to 3 cases: 1 reported 4 cases, 47% reported 3 cases, and 19% reported 2 cases, with the remaining 33% reporting 1 case each. After medication errors (14 cases) and reports lacking sufficient information or a clear description of a diagnostic error (72 cases) were excluded, 583 cases, reported by 283 respondents from 22 institutions in 6 states, were selected for detailed analysis.

Of the 283 respondents, 47% identified themselves as primary care physicians, 22% as specialty physicians, and 11% as other, while 20% did not provide relevant information. Respondents had been in practice an average of 9 years (median, 6 years), with 75% having practiced medicine for 15 years or less. Primary care physicians reported a wide range of common as well as rare diagnoses, whereas specialists typically reported cases limited to their specialty.

Of the 583 reported errors, 30% directly involved the reporting physician, 68% were witnessed being committed by others (without direct involvement of the reporting physician), and 2% were missing data on who made the error. Twenty-eight percent of the total reported errors were rated by the reporter to be major in severity, 41% moderate, and 22% minor, with the remaining being considered to have unknown or no patient impact (Figure 2A). The severity of the errors directly involving the reporting physician was graded as major in 29% of cases, moderate in 39%, and minor in 26%. In comparison, 28% of errors committed by others were graded as major, 44% as moderate, and 21% as minor (χ² P value for differences in proportions, <.01), suggesting that respondents perceived more serious errors to be significantly less common.

Reported diagnostic errors took place in diverse clinical settings, from inpatient to emergency and outpatient care, and encompassed a variety of acute as well as slowly evolving medical conditions (Table 1). Pulmonary embolism and drug reactions (including overdose and poisoning) were the 2 most commonly missed diagnoses (4.5% each), followed closely by lung cancer (3.9%) and colorectal cancer (3.3%). Cancers originating in the lung, colon, or breast accounted for 10.3% of diagnostic errors. Acute coronary syndrome (including acute myocardial infarction) and stroke (including intracranial hemorrhage) together accounted for 5.7% of cases. Surgical emergencies, including bone fracture, abscess, aortic aneurysm or dissection, acute appendicitis, and spinal cord compression, represented 8.2% of cases. All types of cancer together constituted the largest disease category, with 118 reported cases (20.2%).

Using the DEER taxonomy tool to determine where the diagnostic process broke down (Figure 3), we found that laboratory and radiology testing (including test ordering, performance, and clinician processing) accounted for the largest proportion of errors (44%), followed by clinician assessment (32%) (including hypothesis generation, weighing or prioritizing, and recognizing urgency or complications). In terms of identifying the specific process failure that occurred, failure or delay in considering the diagnosis (5A in Figure 3) accounted for the largest number of diagnostic failures (19%), followed by failure or delay in ordering needed tests (4A in Figure 3) and erroneous laboratory or radiology reading of tests (4H in Figure 3) in almost equal frequency (11%). Interrater reliability of the

Table 1. Most Frequently Missed Diagnoses Among 583 Physician-Reported Cases of Diagnostic Error

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonary embolism</td>
<td>26 (4.5)</td>
</tr>
<tr>
<td>Drug reaction or overdose</td>
<td>26 (4.5)</td>
</tr>
<tr>
<td>Lung cancer</td>
<td>23 (3.9)</td>
</tr>
<tr>
<td>Colorectal cancer</td>
<td>19 (3.3)</td>
</tr>
<tr>
<td>Acute coronary syndrome</td>
<td>18 (3.1)</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>18 (3.1)</td>
</tr>
<tr>
<td>Stroke, including hemorrhage</td>
<td>15 (2.6)</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>13 (2.2)</td>
</tr>
<tr>
<td>Fracture, various types</td>
<td>13 (2.2)</td>
</tr>
<tr>
<td>Abscess, various locations</td>
<td>11 (1.9)</td>
</tr>
<tr>
<td>Pneumonia, including type</td>
<td>10 (1.7)</td>
</tr>
<tr>
<td>Aortic aneurysm/dissection</td>
<td>9 (1.5)</td>
</tr>
<tr>
<td>Appendicitis</td>
<td>9 (1.5)</td>
</tr>
<tr>
<td>Depression</td>
<td>9 (1.5)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>8 (1.4)</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>8 (1.4)</td>
</tr>
<tr>
<td>Anemia</td>
<td>6 (1.0)</td>
</tr>
<tr>
<td>Bacteremia</td>
<td>6 (1.0)</td>
</tr>
<tr>
<td>Metastatic cancer</td>
<td>6 (1.0)</td>
</tr>
<tr>
<td>Spinal cord compression</td>
<td>6 (1.0)</td>
</tr>
</tbody>
</table>

©2009 American Medical Association. All rights reserved.
DEER classification for 60 randomly selected cases was moderate, yielding a κ statistic of 0.58 for agreement on where the diagnostic process broke down.

In the case of pulmonary embolism and drug reactions (including overdose and poisoning), failure or delay in considering the diagnosis (5A in Figure 3) accounted for 46% of errors (same percentage for each). In contrast, failure or delay in ordering needed tests (4A in Figure 3 [15%]) and erroneous laboratory or radiology reading of tests (4H in Figure 3 [14%]) were the 2 leading causes of diagnostic error among the aggregated cancer cases (n=118).

A subset of cases (n=179 [31% of total]) involved a secondary diagnostic process error that contributed to the eventual diagnostic failure. We found that the following types of errors clustered together (Figure 3):

4A and 5A (7 cases): Failure or delay in ordering needed tests and failure or delay in considering the diagnosis.

5A and 5C (6 cases): Failure or delay in considering the diagnosis and too much weight on a competing or coexisting diagnosis.

3A and 5C (5 cases): Failure or delay in eliciting critical physical examination findings and too much weight on a competing or coexisting diagnosis.

2A and 3A (4 cases) and 2A and 4A (4 cases): Failure or delay in eliciting a critical piece of history data, associated with failure or delay in eliciting critical physical examination findings or failure or delay in ordering needed tests.

In a subgroup analysis of major diagnostic errors (n=162), 43% were related to clinician assessment and 42% to laboratory and radiology testing. Of these 162 major errors, almost one-fourth (24%) were the consequence of a failure or delay in considering the diagnosis (5A in Figure 3), with failure or delay in ordering needed tests (4A in Figure 3) and placing too much weight on a competing or coexisting diagnosis (5C in Figure 3) in a tie for second place (12% each). Nine percent of these cases were attributable to failed or delayed follow-up of an abnormal test result. The most common diagnoses in this group were lung cancer (6.2%), pulmonary embolism (6.2%), poisoning or overdose (5.6%), stroke (4.9%), acute coronary syndrome (4.3%), aortic aneurysm or dis-
syndrome, stroke, and infections. Unlike the mal-
errors that are not generally collected by existing error
databases, with cancer being the leading category, fol-
ported from previous analyses of large malpractice claims
surveillance and reporting systems.

Physicians readily recalled and were willing to share cases
of diagnostic error with (of 3 cases requested) an average
of 2.2 errors reported by each respondent. This readiness
of diagnostic error with (of 3 cases requested) an average
of 2.2 errors reported by each respondent.

Using in-person and local institutional solicitation, we col-
clected and analyzed 583 cases of physician-identified di-
agnostic errors. While this convenience sample should not be considered perfectly representative of the universe and pattern of diagnostic errors arising in clinical practice, it does represent the largest reported case series of diagnostic errors to date and affords valuable insights into the types of errors that physicians are committing and witnessing. Physicians readily recalled and were willing to share cases of diagnostic error with (of 3 cases requested) an average of 2.2 errors reported by each respondent. This readiness suggests that diagnostic error is not unusual in clinical practice, and actively soliciting such cases represents an opportunity for tapping into a hidden cache of medical errors that are not generally collected by existing error surveillance and reporting systems.

The most frequently missed or delayed diagnoses re-
ported by our survey respondents mirrored those re-
ported from previous analyses of large malpractice claims
databases, with cancer being the leading category, fol-
lowed by cases of pulmonary embolism, acute coronary
syndrome, stroke, and infections. Unlike the mal-
practice setting, our collection of anonymous cases and
descriptions of “what went wrong” and “why did it hap-
pen” afforded those committing an error the opportu-
nity to candidly share (or, in the words of several re-
spondents, “to confess”) errors in a blame-free context.

As expected, specialist physicians generally reported cases in their specialty areas, a factor that likely biased rates of certain diagnoses in favor of sampled specialties but, at the same time, was useful in illustrating referred cases whose diagnoses were missed or delayed by the referring primary care physicians.

Our physician case reviewers found the DEER taxonomy tool intuitive and easy to use, with resulting moderate interrater reliability. This tool has now been applied to classifying diagnostic errors in other settings with cases in which access to the medical record details was available, unlike our cases. When defined broadly to include failures in any stage of the (laboratory and radiology) testing process, including test ordering, specimen processing, test performance, interpretation, and follow-up, testing emerged as the step with the greatest number of reported process failures. There were slightly fewer failures in the clinician assessment stage, often referred to as cognitive errors, which included errors in considering a diagnosis (hypothesis generation) and giving appropriate weight to the various differential diagnoses. There were also sizable numbers of diagnostic errors that we designated as errors in rec-
ognizing the severity of a patient’s illness.

Given the overlapping and inseparable nature of our 2 leading categories—testing and assessment—we found that

<table>
<thead>
<tr>
<th>Correct Diagnosis</th>
<th>What Went Wrong</th>
<th>Why Did It Happen</th>
<th>DEER Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opioid intoxication</td>
<td>Not considered in initial differential diagnosis as potential cause in patient presenting with history of medication overdose; not given appropriate treatment initially, delay</td>
<td>Failure to produce extensive list of differential diagnoses</td>
<td>5A</td>
</tr>
<tr>
<td>Renal failure</td>
<td>Two patients with same name had serum chemistry values interchanged</td>
<td>Improper labeling of samples by nursing staff</td>
<td>4F</td>
</tr>
<tr>
<td>Depression with suicide</td>
<td>Only 1 level of valproic acid level drawn; always obtain 2 levels to appraise trend</td>
<td>Test not performed</td>
<td>4A</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>Patient had acute shortness of breath along with chronic history of pneumonia and lung abscess; no fever, no leukocytosis, 2- to 3 day history of immobility; tachycardia/tachypnea ignored</td>
<td>Symptoms and signs were interpreted as recurrence of pneumonia</td>
<td>5C</td>
</tr>
<tr>
<td>Acute appendicitis</td>
<td>Incomplete history and physical examination; radiologist did not find any findings on the CT consistent with appendicitis</td>
<td>Patient was unable to give clear history, 1 element of this misdiagnosis; also, the radiologist did not have skills to read CTs, his specialty was ultrasonography</td>
<td>2B primary and 4H secondary</td>
</tr>
<tr>
<td>Incarcerated hernia</td>
<td>Discrepancy between 2 radiology readings, 1 official and 1 by a “moonlighter”</td>
<td>Expert opinion of the 2 individual radiologists; however, clinical evidence and final agreement did not delay the surgical management of the case</td>
<td>4H</td>
</tr>
<tr>
<td>Myelodysplastic syndrome</td>
<td>Patient had anemia for a long time that was never worked up</td>
<td>Other medical conditions were more acute and needed to be taken care of, so symptoms were assumed to be due to iron deficiency</td>
<td>5D</td>
</tr>
<tr>
<td>Small cell lung cancer</td>
<td>Delayed biopsy; no report available</td>
<td>Computer system change</td>
<td>4I</td>
</tr>
<tr>
<td>Thyroid cancer</td>
<td>Patient had thyroid nodule; medical resident performed thyroid function tests only; results were normal; no follow-up.</td>
<td>Failed to order needed biopsy</td>
<td>4A</td>
</tr>
<tr>
<td>Colon cancer</td>
<td>Patient assumed to have hemorrhoidal bleeding</td>
<td>High patient volume; no other diagnosis sought</td>
<td>5A</td>
</tr>
</tbody>
</table>

Abbreviation: CT, computed tomogram.
clearly differentiating them can be difficult and perhaps of questionable value in shedding insight into the error. If a critical test was not ordered because a diagnosis was not considered, eg, failure to consider anemia or hypokalemia, how can one classify or even separate patients whose diagnosis was ultimately or incidentally found on a hemogram or an electrolyte panel but was not apparently considered before the test? In each case, we attempted to identify a primary cause, but we believe that one of the important insights to emerge from our review involves the overlapping and clustering of certain patterns of errors, patterns that may be useful to consider when designing error reduction and prevention strategies.

In addition to the above-mentioned limitations related to selection bias, self-reporting, and ambiguities in classification, several additional limitations also need to be noted. In-person respondents were given only a brief opportunity to recall errors, creating the potential for a variety of recall biases. The study lacked the ability to independently review medical records of reported cases and thus had to rely exclusively on respondents’ accounts of events. While we potentially benefited from their first-hand knowledge, these self-reported error descriptions lack the objectivity and thoroughness that an independent root cause analysis would likely yield. Physicians’ ratings of error seriousness were likewise subjective and likely commingled judgments about the seriousness of the outcome or diagnosis as well as the error itself. Finally, we observed considerable variability in the quality and details of case descriptions provided by survey respondents, varying from detailed descriptions of the error and its potential multifactorial causes to only a few words describing the circumstances that were considered responsible for the diagnostic error.

What can we learn from these cases beyond simply reinforcing awareness that such errors are occurring? While we are unable to quantify incidence rates, the respondents’ cases paint a varied picture of heterogeneous types and causes of diagnosis errors. The DEER investigators identified a number of ways that such errors occurred. For example, the missed appendicitis case (Table 2) had commingled system and cognitive failures. Finally, collecting and reporting diagnostic errors gives continued visibility to a ubiquitous but often less overt type of medical error. With the decline of autopsies over the past half century, we are more often literally and figuratively burying our mistakes. Highlighting diagnostic error cases can help remind leaders of health care institutions of their responsibility to foster conditions that will better address and minimize the occurrence and consequences of errors that might otherwise have remained hidden, residing largely in the private memories of individual clinicians rather than becoming institutional knowledge for learning and improvement.

Accepted for Publication: July 28, 2009.
Correspondence: Gordon D. Schiff, MD, Division of General Medicine and Primary Care, Brigham and Women’s Hospital, 1620 Tremont St, Third Floor, Boston, MA 02120 (gschiff@partners.org).

Financial Disclosure: None reported.

Funding/Support: This work was supported by Patient Safety Grant 11552 from the Agency for Healthcare Research and Quality and the Cook County–Rush Developmental Center for Research in Patient Safety DEER Project. Dr Hasan was supported by a National Research Service Award (T32-HP11001-20).

Previous Presentations: This study was presented in part as a poster at the First National Conference on Diagnostic Error in Medicine; May 31, 2008; Phoenix, Arizona; and as an oral abstract at the 32nd Annual Meeting of the Society of General Internal Medicine; May 15, 2009; Miami, Florida.

Additional Contributions: We wish to acknowledge and thank the 283 physicians who generously shared with
us cases of diagnostic errors they had committed or observed.

REFERENCES

