Cognitive interventions to reduce diagnostic error: a narrative review

Mark L Graber,1,2,3 Stephanie Kissam,3 Velma L Payne,4,5 Ashley N D Meyer,6,7 Asta Sorensen,3 Nancy Lenfestey,3 Elizabeth Tant,3 Kerm Henriksen,8 Kenneth LaBresh,3 Hardeep Singh6,7

ABSTRACT

Background: Errors in clinical reasoning occur in most cases in which the diagnosis is missed, delayed or wrong. The goal of this review was to identify interventions that might reduce the likelihood of these cognitive errors.

Design: We searched PubMed and other medical and non-medical databases and identified additional literature through references from the initial data set and suggestions from subject matter experts. Articles were included if they either suggested a possible intervention or formally evaluated an intervention and excluded if they focused solely on improving diagnostic tests or provider satisfaction.

Results: We identified 141 articles for full review, 42 reporting tested interventions to reduce the likelihood of cognitive errors, 100 containing suggestions, and one article with both suggested and tested interventions. Articles were classified into three categories: (1) Interventions to improve knowledge and experience, such as simulation-based training, improved feedback and education focused on a single disease; (2) Interventions to improve clinical reasoning and decision-making skills, such as reflective practice and active metacognitive review; and (3) Interventions that provide cognitive ‘help’ that included use of electronic records and integrated decision support, informaticians and facilitating access to information, second opinions and specialists.

Conclusions: We identified a wide range of possible approaches to reduce cognitive errors in diagnosis. Not all the suggestions have been tested, and of those that have, the evaluations typically involved trainees in artificial settings, making it difficult to extrapolate the results to actual practice. Future progress in this area will require methodological refinements in outcome evaluation and rigorously evaluating interventions already suggested, many of which are well conceptualised and widely endorsed.

INTRODUCTION

Although the rate of diagnostic error in practice is unknown, experts estimate it to be in the range of 10%–15%.1 Diagnostic errors are of great concern in all specialties and those characterised by high levels of stress, workload and distractions are particularly vulnerable. Errors are more likely when the level of uncertainty is high, if clinicians are unfamiliar with the patient, and when there are atypical or non-specific presentations of a common disease or ‘distracting’ comorbid conditions.2

Diagnostic errors reflect the complex interplay of system-related and cognitive factors, typically with multiple root causes identifiable in a single case.3–6 Cognitive errors can be found in the majority of cases.4,7 Given the dominant role that cognitive shortcomings play in contributing to diagnostic error, it is appropriate to begin considering what could be done to help minimise the likelihood of these errors. We therefore conducted an analytic review of the literature to identify interventions to reduce the likelihood of cognitive errors or error-related harm in healthcare. Interventions relating to system-related factors were discussed in a companion publication.8

METHODS

Our search strategy has been previously described.8 Briefly, we sought articles, books and conference presentations relating to the prevention, reduction or mitigation of diagnostic errors in PubMed and several other medical and non-medical databases. We pursued references from these sources and asked authorities in the field of applied cognition and decision-making to recommend additional readings. Articles and books were included in this analysis if they contained results from an intervention trial or suggested an intervention to reduce cognitive-related diagnostic error.
refinement of specific diagnostic tests or technologies, or solely on the aetiology or epidemiology of error, or dealt primarily with provider satisfaction or preferences were excluded.

A full-text review using an approach described by Gordon and Findley was performed on the 42 empirical studies that tested an intervention. Nineteen quality-based criteria were independently extracted from each article using a data extraction form (online appendix A). Items answered with ‘yes’ or ‘no’ included literature review described, clear objectives reported, study design reported, appropriate design to address objectives, control group used, subjects randomised, blinding used, intervention clearly described, resources described, outcomes match objectives, statistical tests used, statistical tests appropriate, data collection replicable, study replication possible and limitations discussed. Additional items assessed were the study design, subject characteristics and number of subjects. Based on these items, we assigned an ‘Outcomes Rating’ and ‘Strength of Conclusions’ rating to each article (detailed instruments in online appendix B). The Outcomes Rating was based on Kirkpatrick’s hierarchy that we slightly modified for use in assessing diagnostic errors. This hierarchy demonstrates the level of impact of each intervention on diagnostic errors (eg, Level 2b refers to an intervention in which an acquisition of concepts might impact diagnostic error, whereas Level 4b refers to an intervention that directly reduces diagnostic error). The Strength of Conclusions of each study was rated on a numerical scale (1–5) in accordance with Best Evidence in Medical Education guidelines. This rating is not an assessment of the overall methodological quality, but is a measure of how well the conclusions made are supported by the data presented.

Two reviewers with expertise in cognitive psychology (ANDM and VLP) assessed each of the intervention studies independently. We assessed agreement between the reviewers for the Outcomes Rating and the Strength of Conclusions with Cohen’s \(k \) statistic. Differences were resolved by discussion between the two reviewers and in cases of disagreement, another investigator (SK) reviewed and rated the article. In these cases, we used consensus among these three reviewers to determine the final ratings.

Based on a prior classification scheme, all articles were assigned to one of three natural categories: (1) Interventions that increase medical knowledge and experience; (2) Interventions that improve clinical reasoning; and (3) Interventions that involve getting help. Articles were further subdivided into more specific types of interventions (such as ‘focused training on specific content areas’, ‘develop simulation exercise to expose clinicians to a greater number and variety of cases presentations’, etc.) to facilitate the synthesis of the findings (tables 1–4).

RESULTS

We identified 141 sources (articles, books and conference papers) for full review. Of these, 42 sources (tables 1–4) reported empirical studies of an intervention to reduce cognitive-based diagnostic error (and sometimes also additional suggestions for interventions), 100 sources contained only suggestions (table 5) and one had both. Some sources reported more than one suggestion.

During the full-text review of the empirical studies assessing cognitive interventions, agreement between reviewers on the Outcomes Rating was substantial \((k=0.70) \). Similar agreement was obtained for the Strength of Conclusions \((k=0.70) \). There were three articles with disagreements that were resolved by discussions with a third reviewer. We categorised the intervention studies into one of three mutually exclusive categories: (1) Interventions to increase clinicians’ knowledge and experience, (2) Interventions to improve clinical reasoning and decision-making skills or (3) ‘Get help’, interventions that assist clinicians with tools or access to other clinicians or experts. For each of these sections, we use the suggested intervention and background literature to first provide context, following which we discuss the tested interventions. The Outcomes Ratings and Strength of Conclusions ratings for each intervention article are included in tables 1–4.

1) Increase knowledge and experience

Diagnostic error could potentially be reduced by increasing physician’s structured knowledge and experience, the essential basis of expertise. By definition, experts will tend to make the fewest errors, have the best degrees of calibration and excel in efficient diagnosis. Medical educators similarly agree with the concept of increasing experience as the key to developing expertise. The interventions in this domain are summarised in table 1 and are organised into the following three categories.

Training focused on specific content areas

An effect of training on diagnostic reliability is illustrated in radiology, where certain certification programmes are based on demonstrating competency. For instance, radiologists in the UK must review 5000 mammograms a year for certification, as opposed to 480 in the USA, which may in part account for the large difference in diagnostic accuracy noted between the two countries. In certain programmes, radiologists also receive
<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Study type and participants</th>
<th>Intervention</th>
<th>Outcome measures</th>
<th>Results</th>
<th>Conclusions</th>
<th>Outcomes Rating</th>
<th>Strength of Conclusions (1–5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fridriksson et al (2001)</td>
<td>Group randomised with nurses and physicians</td>
<td>Training on identifying subarachnoid haemorrhages.</td>
<td>Diagnostic errors based on subarachnoid haemorrhage rupture rates in actual patients.</td>
<td>Decrease in diagnostic errors.</td>
<td>Training can have a profound impact on diagnostic error outcome at a low cost.</td>
<td>4b</td>
<td>4</td>
</tr>
<tr>
<td>Rezvy et al (2008)</td>
<td>Before/after with psychiatrists</td>
<td>Addition of diagnostic coding training to general psychiatric education programme required for psychiatric recertification.</td>
<td>Diagnostic accuracy of clinical case vignettes after training.</td>
<td>Diagnostic accuracy improved more than control group whose education programme focused only on general psychiatry.</td>
<td>Training focused on diagnostic coding can positively affect diagnostic accuracy of case vignettes. Further research needed to determine if improvement leads to changes in routine diagnostic practice.</td>
<td>4b</td>
<td>4</td>
</tr>
<tr>
<td>Gutmark et al (2007)</td>
<td>Survey with physicians (all levels)</td>
<td>Use of teaching database of radiology cases diagnosed accurately or inaccurately.</td>
<td>Physician’s opinion of the collection of cases available in database.</td>
<td>Database most used by residents and fellows for learning and reference. Attendings used it for teaching.</td>
<td>Teaching databases can be useful for training and reference. Research needed to determine effects of tool on diagnostic accuracy.</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Bond et al (2004)</td>
<td>Case series with 2nd and 3rd year emergency medicine residents</td>
<td>Embed cognitive error traps in cases within simulation lab to introduce cognitive forcing strategies to deal with errors. Debriefing used to review errors.</td>
<td>Self-report of residents’ perception of benefit of intervention.</td>
<td>Residents said simulation was beneficial (though less than direct patient care). Increased knowledge of cognitive errors and forcing strategies. Knowledge was not actually assessed.</td>
<td>Educating residents on cognitive errors and forcing strategies is promising, but warrants further study and quantification of the effectiveness of educational techniques.</td>
<td>2b</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1 Interventions to increase medical knowledge and experience

Training: focused training on specific content area

Simulation: develop simulation exercises to expose clinicians to a greater number and variety of case presentations
<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Study type and participants</th>
<th>Intervention</th>
<th>Outcome measures</th>
<th>Results</th>
<th>Conclusions</th>
<th>Outcomes Rating</th>
<th>Strength of Conclusions (1–5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carlson et al (2011)</td>
<td>Before/after with 4th year medical students</td>
<td>Use of diagnostic reminder system (ISABEL) to reduce diagnostic error while clinicians assessed live people trained as patients or a manikin in a simulation lab.</td>
<td>Change in diagnostic accuracy after intervention. View of diagnostic reminder system as an education tool and resource for practice.</td>
<td>Diagnostic accuracy improved. Tool was viewed as beneficial as a training tool and as useful in practice.</td>
<td>Diagnostic reminder systems can potentially reduce cognitive-based diagnostic errors. The optimal time within training to introduce the use of such tools remains unclear. It is unclear whether diagnostic accuracy is increasing simply because of additional time spent on diagnosing problem.</td>
<td>2b</td>
<td>2</td>
</tr>
<tr>
<td>Tudor and Finlay (2001)</td>
<td>Before/after with expert radiologists</td>
<td>Review feedback regarding diagnostic errors made diagnosing radiographs.</td>
<td>Diagnostic accuracy rate 4–5 months after reviewing feedback.</td>
<td>Diagnostic error rate in same cases decreased nominally (no statistics reported).</td>
<td>Allowing radiologists to review their errors may decrease diagnostic error rate. More research needed to determine if effects generalise to new cases/domain.</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Wood and Tracey (2009)</td>
<td>Group randomised control trial with doctoral students</td>
<td>Receiving content-based or principle-based feedback to reduce diagnostic error of overshadowing.</td>
<td>Reduction of overshadowing across feedback conditions.</td>
<td>Similar decrease in overshadowing for both feedback interventions. Less reduction in control group. Generalisation effect for content-based feedback.</td>
<td>Giving clinicians feedback regarding specific attributes of a case or cognitive diagnostic reasoning strategies may reduce diagnostic error involving overshadowing.</td>
<td>4b</td>
<td>4</td>
</tr>
</tbody>
</table>

Feedback and calibration: provide intensive, detailed, specific feedback

Outcomes Ratings reflect the level of impact for each intervention on reducing diagnostic errors.\(^9\)\(^10\). Strength of Conclusions was rated on a numerical scale (1–5) in accordance with Best Evidence in Medical Education guidelines (5=strongest).\(^9\)\(^11\)
<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Study type and participants</th>
<th>Intervention</th>
<th>Outcome measures</th>
<th>Results</th>
<th>Conclusions</th>
<th>Outcomes Rating</th>
<th>Strength of Conclusions (1–5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sherbino et al (2011)</td>
<td>Case series with 4th year residents</td>
<td>Teaching cognitive forcing strategies to introduce diagnostic error risk, identify and countermand biases.</td>
<td>Diagnostic accuracy in various domains after varying delays.</td>
<td>After training about half the subjects still committed bias. Performance suffered even further after a delay.</td>
<td>Teaching cognitive forcing strategies may reduce diagnostic errors in a transferable way (though it is difficult to tell without performance measures prior to training). Also, the effects were short-lived.</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Eva et al (2007)</td>
<td>Randomised control trial with undergraduate psychology students</td>
<td>Use combined approach to reasoning including pattern recognition and careful consideration of presenting features when diagnosing ECGs with biasing information.</td>
<td>Diagnostic accuracy of ECG readings.</td>
<td>Diagnostic accuracy improved for subjects using combined reasoning approach even in presence of biasing information.</td>
<td>Trainees can benefit from explicit guidance of a combined approach to clinical reasoning, suggesting a value to both analytic and non-analytical reasoning tendencies.</td>
<td>4b</td>
<td>4</td>
</tr>
<tr>
<td>Mamede et al (2010)</td>
<td>Before/after with 1st and 2nd year residents</td>
<td>Incorporation of reflective reasoning to reduce diagnostic errors.</td>
<td>Diagnostic errors produced before and after reflective reasoning.</td>
<td>Significant number of diagnoses were corrected after reflective reasoning, presumably reducing bias.</td>
<td>Diagnostic accuracy may be improved with reflective reasoning. More research needed to disentangle reflective reasoning from additional time assessing a case to determine if reflection generalises to experts.</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Author (Year)</td>
<td>Study type and participants</td>
<td>Intervention</td>
<td>Outcome measures</td>
<td>Results</td>
<td>Conclusions</td>
<td>Outcomes Rating</td>
<td>Strength of Conclusions (1–5)</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>---------</td>
<td>-------------</td>
<td>----------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Coderre et al (2010)</td>
<td>Before/after with 1st year medical students</td>
<td>Have students reflect on initial hypothesis established prior to reviewing all clinical evidence. Then present additional concordant or discordant evidence.</td>
<td>Diagnostic accuracy.</td>
<td>With discordant data, significant increase in diagnostic accuracy. No difference in accuracy with concordant data. Overall, no significant difference in diagnostic accuracy.</td>
<td>Providing students with additional information after an initial diagnosis affects diagnostic accuracy differently depending on the type of information received. More research needed to determine validity of the intervention.</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Wolpaw et al (2009)</td>
<td>Randomised control trial with 3rd year medical students</td>
<td>Incorporation of SNAPPS technique during case presentation to facilitate learning.</td>
<td>Diagnostic reasoning measures including number of minutes to present findings, was summary concise and thorough, etc.</td>
<td>SNAPPS group showed more diagnostic reasoning than a feedback comparison and a control group.</td>
<td>Using the SNAPPS technique may result in correction of flawed reasoning, reduction of diagnostic and therapeutic errors. Study only measured amount of reasoning and not accuracy thereof, so it is unclear how this intervention would improve diagnostic accuracy.</td>
<td>2b</td>
<td>3</td>
</tr>
</tbody>
</table>

Outcomes Ratings reflect the level of impact for each intervention on reducing diagnostic errors. Strength of Conclusions was rated on a numerical scale (1–5) in accordance with Best Evidence in Medical Education guidelines (5=strongest). SNAPPS: Summarize history and findings, Narrow the differential, Analyze the differential, Probe preceptor about uncertainties, Plan management, Select case-related issues for self-study.
<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Study type and participants</th>
<th>Intervention</th>
<th>Outcome measures</th>
<th>Results</th>
<th>Conclusions</th>
<th>Outcomes Rating</th>
<th>Strength of conclusions (1–5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raab et al²⁴ (2008)</td>
<td>Before/after with expert cytologists</td>
<td>Use of second readings pre sign-out at three institutions, comparing random reviews to organ-targeted reviews.</td>
<td>Proportion of diagnostic errors detected.</td>
<td>Few diagnostic errors detected; no significant differences among sites; Tissue-specific reviews yielded higher error rates than random reviews.</td>
<td>Tissue-specific reviews yielded higher error rates than random reviews.</td>
<td>2b 2</td>
<td></td>
</tr>
<tr>
<td>Raab et al²⁵ (2006)</td>
<td>Before/after with expert pathologists</td>
<td>Second reading of pathology cases. Random review of 5% of cases and focused review of all cases.</td>
<td>Per cent of diagnostic errors. Impact of difference on patient care.</td>
<td>Focused review detected approximately four times more diagnostic errors than 5% random review. The majority of errors in both groups did not lead to patient harm or resulted in low-grade harm.</td>
<td>Second opinion reviews can be a method to standardise diagnostic practice.</td>
<td>4a 3</td>
<td></td>
</tr>
<tr>
<td>Manion et al²⁶ (2008)</td>
<td>Before/after with expert pathologists</td>
<td>Second reading of pathology slides received from an external organisation.</td>
<td>Rate of diagnostic variation and change in patient management due to second reading.</td>
<td>No disagreement in majority; minor disagreement in small%; major disagreement in very small % of cases. Change in management plan in half of cases with major disagreement.</td>
<td>Mandatory second opinion of surgical pathology may be a beneficial patient care practice. However, upon disagreement, it is not clear how often the second opinion was correct due to inconclusive chart reviews.</td>
<td>4a 2</td>
<td></td>
</tr>
<tr>
<td>Nordrum et al²⁷ (2004)</td>
<td>Before/after with expert pathologists</td>
<td>Use of still images in second opinion of pathology cases.</td>
<td>Diagnostic accuracy rate (glass slides vs still images).</td>
<td>Nearly the same diagnostic accuracy rate with still images and glass slides.</td>
<td>Using still images to diagnose cases appears to be comparable to using glass slides, thus increasing ease of obtaining second opinions.</td>
<td>3 3</td>
<td></td>
</tr>
<tr>
<td>Author (year)</td>
<td>Study type and participants</td>
<td>Intervention</td>
<td>Outcome measures</td>
<td>Results</td>
<td>Conclusions</td>
<td>Outcomes Rating</td>
<td>Strength of conclusions (1–5)</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------</td>
<td>--------------</td>
<td>------------------</td>
<td>---------</td>
<td>-------------</td>
<td>----------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Hamady et al (2005)</td>
<td>Before/after with an expert surgeon, oncologist and pathologist</td>
<td>Use of second opinions of a multidisciplinary team of clinicians.</td>
<td>Percentage of second opinions resulting in different diagnosis.</td>
<td>Complete agreement in majority of cases. Disagreement a small % of the time.</td>
<td>Diagnostic and therapeutic discrepancies can occur when multiple experts review the same patient case. It is unclear if the second opinion leads to better outcomes.</td>
<td>4a</td>
<td>4</td>
</tr>
<tr>
<td>Benger and Lyburn (2003)</td>
<td>Before/after with ER and radiology staff</td>
<td>Second reading of radiographs by the radiology staff for x-rays processed by ER.</td>
<td>Rate of diagnostic agreement. Clinical impact of diagnostic discrepancy.</td>
<td>Very small amount of discrepancies that required minuscule change in management.</td>
<td>The low rate of significant misread radiographs suggests incorporation of selective second readings may be warranted.</td>
<td>4a</td>
<td>3</td>
</tr>
<tr>
<td>Espinosa and Nolan (2000)</td>
<td>Before/after with ER physicians and radiologists</td>
<td>X-Rays read by ER physician and radiologist.</td>
<td>Radiograph interpretation error and number of potential adverse events.</td>
<td>Interpretation error rate and potential adverse effects decreased (based on reliability model not raw data).</td>
<td>Procedures for interpreting radiographs designed to mitigate errors can reduce the adverse events. Without a control group it is difficult to know if improvement is from intervention.</td>
<td>4a</td>
<td>2</td>
</tr>
<tr>
<td>Duijm et al (2007)</td>
<td>Before/after with mammography technicians and radiologists</td>
<td>Second reading of mammograms by technologists, along with standard double reading by radiologists.</td>
<td>Breast cancer detection and positive predictive value (PPV) of referral.</td>
<td>Modest increase in cancer detection and modest decrease in PPV.</td>
<td>Adding second reading by technologists may be effective in detecting more breast cancer cases. Readings should be considered for referral due to high prevalence of breast cancer.</td>
<td>4a</td>
<td>4</td>
</tr>
<tr>
<td>Second opinions in radiology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3 Continued
<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Study type and participants</th>
<th>Intervention</th>
<th>Outcome measures</th>
<th>Results</th>
<th>Conclusions</th>
<th>Outcomes Rating</th>
<th>Strength of conclusions (1–5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kwek et al (2003)</td>
<td>Before/after with expert pathologists</td>
<td>Blinded second readings in mammography.</td>
<td>Rate of cancer detection, patient recall, rate of biopsy and mean second screener contribution.</td>
<td>Low increase of cancer detection. Recall rate increased modestly. Biopsy rate slightly increased. Efficiency of second reader minimal.</td>
<td>Second reading of mammograms is recommended for breast cancer screening if resources are available.</td>
<td>4a</td>
<td>4</td>
</tr>
<tr>
<td>Christensen et al (2000)</td>
<td>Non-randomised controlled trial with clinical teams</td>
<td>Team diagnostic decision-making where members were given shared or private information that the group needed to share for correct diagnoses.</td>
<td>Diagnostic error rate.</td>
<td>Diagnostic errors increased when team members held private information.</td>
<td>Lack of sharing data may be detrimental to diagnostic accuracy. Clinical decisions relying on privately held information are susceptible to errors.</td>
<td>2b</td>
<td>4</td>
</tr>
<tr>
<td>Mulvaney et al (2008)</td>
<td>Randomised control trial with clinical teams</td>
<td>Use of evidence based informatics tool that provides research evidence to inform clinicians of patient care practices.</td>
<td>Impact on patient care practices and clinical actions, articles read, satisfaction of search results, consultations, time to obtain evidence, clinician searches.</td>
<td>Tool had significant impact on users’ report of future patient care, satisfaction of articles returned and amount of time spent receiving evidence. No significant impact on other items.</td>
<td>Informatics tools may facilitate use of research evidence and influence clinical actions. However, data regarding effects on patients are unknown as a result of this study.</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Outcome Ratings reflect the level of impact for each intervention on reducing diagnostic errors.\(^9\)\(^10\) Strength of Conclusions was rated on a numerical scale (1–5) in accordance with Best Evidence in Medical Education guidelines (5=strongest).\(^9\)\(^11\) ER; Emergency Room.
<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Study type and participants</th>
<th>Intervention</th>
<th>Outcome measures</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pozen et al.</td>
<td>1984</td>
<td>Non-randomised control trial with ER physicians</td>
<td>Incorporation of decision support tool that calculates the probability of patient having ischaemic heart disease.</td>
<td>Diagnostic accuracy, Sensitivity, Specificity, FP discharge rate, FN admission rate.</td>
<td>Use of tool increased diagnostic accuracy and reduced admission rate. Use of tool has potential to increase diagnostic accuracy and reduce admission rate.</td>
<td></td>
</tr>
<tr>
<td>Selker et al.</td>
<td>1998</td>
<td>Non-randomised control trial with attending ER physician and residents</td>
<td>Computerised prediction tool that calculated probability of acute ischaemia that was printed on ECG.</td>
<td>Accuracy of triage decisions. Tool reduced unnecessary CCU admissions and did not change appropriate admission rates.</td>
<td>Use of the tool has the potential to significantly reduce unnecessary hospitalisations.</td>
<td></td>
</tr>
<tr>
<td>Bogusevicius et al.</td>
<td>2002</td>
<td>Randomised control trial with radiologists</td>
<td>Use of a computer-aided diagnosis tool to diagnose acute small bowel obstruction.</td>
<td>Diagnostic accuracy, Predictive value, Time to diagnosis, Mortality and morbidity.</td>
<td>No significant advantage over contrast radiography for diagnostic accuracy. Significantly less time required to diagnosis.</td>
<td></td>
</tr>
<tr>
<td>De Simone et al.</td>
<td>2007</td>
<td>Before/after with medical personnel</td>
<td>Use of computer-assisted diagnosis database for diagnosis and management of headaches compared with standard clinical method.</td>
<td>Diagnostic accuracy, Mean visit duration, Patient management, Subjective opinion of computer-assisted interview acceptability.</td>
<td>Slight increase in diagnostic accuracy, Duration of clinical visit comparable. Subjects felt tool was easy to use and patients felt the tool use was acceptable.</td>
<td></td>
</tr>
</tbody>
</table>
Table 4 Continued

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Study type and participants</th>
<th>Intervention</th>
<th>Outcome measures</th>
<th>Results</th>
<th>Conclusions</th>
<th>Outcomes Rating</th>
<th>Strength of Conclusions (1–5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cimino<sup>40</sup> (2006)</td>
<td>Survey with nurses, attendings, residents, medical students</td>
<td>Focused decision support using embedded decision support tools (Infobuttons)</td>
<td>Use of online resources through an Infobutton Manager (IM) providing direct, context-specific information.</td>
<td>User satisfaction regarding information returned from online resources.</td>
<td>Satisfaction with the IM varied. Overall users felt IM had a positive effect on patient care decisions.</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Ramnarayan et al<sup>41</sup> (2006)</td>
<td>Before/after with paediatric interns and residents</td>
<td>General decision support using web-enabled differential diagnosis generators</td>
<td>Use of an internet diagnostic decision support tool (ISABEL) during diagnosis.</td>
<td>Change in proportion of unsafe diagnostic investigations and mean quality score of diagnosis following tool consultation.</td>
<td>Significant proportion of unsafe investigations reduced with tool use. Mean diagnostic quality score increased.</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Ramnarayan et al<sup>42</sup> (2007)</td>
<td>Audit of system</td>
<td>Use of diagnostic decision support tool (ISABEL) when diagnosing patients with resuscitation issues in emergency room.</td>
<td>Percentage of time accurate diagnosis was in list provided by tool and proportion of time tool included must-not-miss diagnoses.</td>
<td>Tool contained correct diagnosis and must-not-miss diagnosis in nearly every case.</td>
<td>Diagnostic aid performs an acceptable degree of clinical accuracy in ED. Further research is needed to determine role of tool in clinical practice.</td>
<td>2b</td>
<td>3</td>
</tr>
<tr>
<td>Ramnarayan et al<sup>43</sup> (2003)</td>
<td>Audit with clinicians of varying levels of expertise and system</td>
<td>Use of internet diagnostic decision support tool (ISABEL) as a reminder of possible diagnoses to consider.</td>
<td>Proportion of cases with expected diagnosis in results generated by tool.</td>
<td>Using hypothetical and real patient cases, tool returned the correct diagnosis in nearly every case.</td>
<td>Tool showed acceptable clinical accuracy by providing correct diagnosis for real and hypothetical cases. It is anticipated the use of tool is effective in assisting physicians to accurately diagnose children.</td>
<td>2b</td>
<td>4</td>
</tr>
<tr>
<td>Author (year)</td>
<td>Study type and participants</td>
<td>Intervention</td>
<td>Outcome measures</td>
<td>Results</td>
<td>Conclusions</td>
<td>Outcomes Rating</td>
<td>Strength of Conclusions (1–5)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>-----------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Ramnarayan et al (2006)</td>
<td>Before/after with clinicians of varying levels of expertise</td>
<td>Use of a diagnostic system (ISABEL) to determine diagnosis after diagnosing case without system.</td>
<td>Rate of diagnostic errors, diagnostic quality score and time using system.</td>
<td>Decline in diagnostic errors. Increase in diagnostic quality score. No significant outcome by level of experience. Median time for system use was 1 min.</td>
<td>Study suggests promising role for reminder-based diagnostic decision support tool to reduce diagnostic errors.</td>
<td>4b</td>
<td>4</td>
</tr>
<tr>
<td>Graber and Matthew (2008)</td>
<td>Before/after with physicians and system</td>
<td>Use of diagnostic decision support tool (ISABEL) to determine correct diagnosis upon entry of patient key findings of complex medical cases.</td>
<td>Percentage of cases where tool returned the same diagnosis as listed in the NEJM. Amount of time using the tool.</td>
<td>When entering evidence manually tool returned correct diagnosis in nearly all cases. When pasting case text as listed in NEJM, tool contained correct diagnosis three-fourths of cases. Both entry approaches were fast.</td>
<td>Tool performed quickly and accurately in suggesting correct diagnoses and should be evaluated in natural environments to determine its potential to support clinical diagnosis and reduce the rate of diagnostic errors.</td>
<td>2b</td>
<td>3</td>
</tr>
<tr>
<td>Tang and Ng (2006)</td>
<td>Audit with physician and rheumatologist</td>
<td>Searching Google.com to determine correct diagnosis for case presented in NEJM.</td>
<td>Percentage of diagnoses from Google that corresponded with NEJM diagnosis.</td>
<td>Google searches revealed correct diagnosis in slightly more than half of cases.</td>
<td>As the internet becomes more available in clinical settings, use of web-based searching tools may help physicians diagnose difficult cases.</td>
<td>2b</td>
<td>2</td>
</tr>
</tbody>
</table>

Outcome Ratings reflect the level of impact for each intervention on reducing diagnostic errors. Strength of Conclusions was rated on a numerical scale (1–5) in accordance with Best Evidence in Medical Education guidelines (5=strongest). CCU, Coronary-care unit; ER, Emergency Room; FN, False Negative; FP, False Positive; NEJM, New England Journal of Medicine.
additional training in cancer detection where they attend disease-related meetings, receive feedback on cancer detection rates and attend a 2-week course led by specialists at high-volume mammography screening sites. \(^{35}\) Similar measures, including regular peer review and participation in the American College of Radiology’s RADPEER\(^{TM}\) system, have been proposed for the USA. \(^{148}\)

Interventions to increase the knowledge base of practicing clinicians through continuing medical education activities have generally not led to substantial improvement in measured performance. \(^{56, 57}\)

Table 5 Intervention suggestions

<table>
<thead>
<tr>
<th>Intervention idea</th>
<th>Suggested in article authored by</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCREASE MEDICAL KNOWLEDGE AND EXPERIENCE</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td></td>
</tr>
<tr>
<td>Increase expertise and experience</td>
<td>Kassirer et al(^{47}); Gigerenzer(^{48}); Elstein(^{49}); Klein(^{50, 51}); Berner and Graber(^{1}); Bazerman and Moore(^{86}); Norman(^{93})</td>
</tr>
<tr>
<td>Training</td>
<td>Smith-Bindman et al(^{64}); Singh et al(^{65})</td>
</tr>
<tr>
<td>Routinely test competency in diagnostic accuracy; provide training to increase competency</td>
<td></td>
</tr>
<tr>
<td>Continuing education</td>
<td>Bowen(^{56}); Davis et al(^{67})</td>
</tr>
<tr>
<td>Focused training on specific content area</td>
<td>Freidlander and Phillips(^{58}); Gentner(^{59}); Hershberger et al(^{60}); Parmley(^{61})</td>
</tr>
<tr>
<td>Improve learning skills, per se</td>
<td>Hogarth(^{62})</td>
</tr>
<tr>
<td>Simulation</td>
<td>Bond et al(^{63})</td>
</tr>
<tr>
<td>Develop simulation exercises to expose clinicians to a greater number and variety of case presentations</td>
<td>Smith-Bindman et al(^{64}); Schiff(^{64}); Jamtvedt et al(^{65}); Papa et al(^{66}); Stone and Ope(^{67}); Alpert and Hillman(^{68}); Arkes(^{69}); Humble et al(^{70}); Pulford and Colman(^{71}); Subbotin(^{72})</td>
</tr>
<tr>
<td>Feedback and calibration</td>
<td></td>
</tr>
<tr>
<td>Provide intensive, detailed, specific feedback</td>
<td></td>
</tr>
<tr>
<td>Learn from errors</td>
<td>Fischer et al(^{73}); Hogarth(^{62}); Eva(^{74})</td>
</tr>
<tr>
<td>IMPROVE INTUITIVE AND DELIBERATE PROCESSES IN DECISION-MAKING</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td></td>
</tr>
<tr>
<td>Improve general training on clinical reasoning & the dual process model</td>
<td>Berner and Graber(^{1}); Kassirer et al(^{47}); Elstein(^{49}); Eva(^{74}); 75; Croskerry(^{76–78}); Norman(^{53}); Wolpaw et al(^{83})</td>
</tr>
<tr>
<td>Improve system 1 processing</td>
<td>Berner and Graber(^{1}); Croskerry(^{76–78}); Wedding and Faust(^{79}) Groves et al(^{80}); Pines(^{81}); Moulton et al(^{82}); Trowbridge(^{83}); Kuhn(^{84})</td>
</tr>
<tr>
<td>Debias your own intuitive decisions</td>
<td>Croskerry(^{76–78}); Norman(^{53}); Fischhoff(^{85}); Milkman(^{86}) Larrick(^{87}); Gentner et al(^{88}); Koriat et al(^{88}); Renner and Renner(^{89}); Estrada et al(^{90}) Scott(^{91}); Slovic and Fischhoff(^{92}) Arkes et al(^{69}) 154; Lichtenstein et al(^{93})</td>
</tr>
<tr>
<td>Improve metacognition, nurture intuition and use of reflective practice</td>
<td>Schon(^{94}); Greenhalgh(^{95}); Mamede et al(^{96}); Singh et al(^{97}); Brawn(^{98}); Gregory(^{99}); Noddings and Shore(^{100}); Quirk(^{101}); Klein(^{51}); Hogarth(^{62}); Hamm and Zubialde(^{102}); Moulton et al(^{82}); Trowbridge(^{83}); Croskerry(^{76–78}) 103</td>
</tr>
<tr>
<td>Use a checklist or related tools</td>
<td>Leonidas(^{104}); Gawande(^{105}); Trowbridge(^{83}); Ely et al(^{106}) Taleb(^{107}); Wedding and Faust(^{79}); Sackett et al(^{158}); Brannick et al(^{106}); Milkman et al(^{86}); Arkes(^{108}); Croskerry(^{78}); Schwenk(^{110}); Baron(^{111}); Mitchell et al(^{12}); Bazerman and Moore(^{86}); Mussweiler(^{113}); Lord et al(^{114}); Arzy et al(^{115}); Gorman and Gorman(^{116}); Hirt and Markman(^{117}); Mumma and Steven(^{118}); Singh(^{97})</td>
</tr>
<tr>
<td>Consider alternatives; consider the opposite; use prospective hindsight; think like an outsider</td>
<td></td>
</tr>
</tbody>
</table>

Continued
Interventions

We identified three formal studies of training interventions related to diagnostic error.12–14 One notable study was a highly content-specific intervention to improve recognition of subarachnoid haemorrhage. This low-cost training programme on sudden onset headache for community-based physicians reduced the baseline diagnostic error rate (12\%) by 77\% and improved interactions between neurosurgeons and local physicians.12

Simulation

The ability to provide realistic simulations through both scenarios and simulated patients offers the potential to improve skills in clinical reasoning63 and the opportunity to expose trainees or physicians to a greater number and variety of case presentations. Simulation is a well-established approach to improving manual, procedural skills, but has not yet been evaluated extensively in its ability to improve cognitive skills or decision-making related to diagnosis. It also remains to be demonstrated that simulation can replace experience in actual practice.

Feedback as a way to improve expertise, calibration and error awareness

Deliberate practice, with immediate and focused feedback, is viewed as an essential prerequisite to developing expertise in any domain.144, 145 Moreover, lack of feedback is a dominant factor that sustains overconfidence, thought to be a major factor in causing diagnostic error.1 A systematic review of feedback across all medical areas (not solely diagnosis) concluded that feedback improves performance in selected settings, especially if the feedback is intensive.65 Feedback is most useful if it incorporates instruction and information on why a given answer was correct or not.66, 67 For example, psychology trainees improved their diagnoses if feedback provided

<table>
<thead>
<tr>
<th>Intervention idea</th>
<th>Suggested in article authored by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improve system 2 processing</td>
<td>Wedding and Faust79, Strauss \textit{et al}119, Sox120, Dobbie \textit{et al}121, Khan and Coomarasamy122, Croskerry123, Pines81, Ullman124, Pauker and Kassirer125, Kassirer126, Brannick \textit{et al}108</td>
</tr>
<tr>
<td>Provide training on the typical pitfalls of specific clinical conditions & situations</td>
<td>Groves \textit{et al}80, Croskerry78, Pines81</td>
</tr>
<tr>
<td>GET HELP FROM OTHER PEOPLE AND/OR DECISION SUPPORT TOOLS</td>
<td></td>
</tr>
<tr>
<td>Second opinions</td>
<td>Elstein49, Christensen \textit{et al}84, Tatarka127</td>
</tr>
<tr>
<td>Second readings in pathology</td>
<td>Ullman124, Raab128</td>
</tr>
<tr>
<td>Groups and librarians</td>
<td>Zipperer and Sykes129, Albert130, Zipperer131</td>
</tr>
<tr>
<td>Actuarial decisions</td>
<td>Elstein49, Croskerry78, Berner and Graber1, Tatarka127, Milkman \textit{et al}86, Wedding and Faust79, Wedding132, Fischhoff85</td>
</tr>
<tr>
<td>Focused decision support</td>
<td>Hunt \textit{et al}133, Klassen \textit{et al}134, Garg \textit{et al}135, Cannon and Allen136</td>
</tr>
<tr>
<td>Improve data display through graphics</td>
<td>Radecki and Medow137, Reyna \textit{et al}138, Bhandari \textit{et al}139, Cook and Smallman140</td>
</tr>
<tr>
<td>Embedded decision support tools; Infobuttons</td>
<td>Kawamoto and Loback141</td>
</tr>
<tr>
<td>General decision support</td>
<td>Hamm and Zubialde102, Schiff and Bates142</td>
</tr>
</tbody>
</table>

Table 5 Continued

Interventions

We identified only two interventions in this domain, both involving trainees. Carlson \textit{et al}16 demonstrated improved diagnostic accuracy by the combined use of simulation with a diagnosis support tool and Bond \textit{et al}15 used simulation successfully to introduce the use of cognitive forcing strategies to emergency medicine residents.

Feedback as a way to improve expertise, calibration and error awareness

Deliberate practice, with immediate and focused feedback, is viewed as an essential prerequisite to developing expertise in any domain.144, 145 Moreover, lack of feedback is a dominant factor that sustains overconfidence, thought to be a major factor in causing diagnostic error.1 A systematic review of feedback across all medical areas (not solely diagnosis) concluded that feedback improves performance in selected settings, especially if the feedback is intensive.65 Feedback is most useful if it incorporates instruction and information on why a given answer was correct or not.66, 67 For example, psychology trainees improved their diagnoses if feedback provided
details on why they were right or wrong. Using feedback to improve diagnostic performance has been most convincingly demonstrated in radiology through programmes such as the ‘PERFORMS’ system in the UK and the RADPEER programme in the USA.

Although clinicians received immediate and dramatic feedback on their diagnostic performance from autopsies, the rate of autopsies is declining. Local ‘Morbidity and Mortality’ conferences and creative new venues such as the ‘Web M&M’ series sponsored by the Agency for Healthcare Research and Quality (http://www.webmm.ahrq.gov/) are alternative venues where feedback is provided. In this spirit, Eva has advocated for incorporating diagnostic error review into medical school and postgraduate training. Alpert and Hillman discuss other types of data that should be part of such feedback, such as the results of professional audits, peer reviews and risk management programmes.

Interventions
Our search yielded two studies on feedback to improve diagnostic performance. Both studies showed benefits of feedback on later diagnostic accuracy. The positive impact noted by Wood and Tracey was possibly explained by the provision of detailed feedback to trainees on the reasons their initial diagnoses were correct or not.

Category 1 summary
The empiric studies identified were positive, but generally used trainees and specific content limiting the ability to generalise the impact of results to actual practice.

2) Improve clinical reasoning
According to the currently popular paradigm, diagnoses are made by some interacting combination of intuitive, automatic processing (system 1) and deliberate, rational consideration (system 2). Interventions to reduce diagnostic error have been suggested in each of these areas, and many authors have advocated for the benefits of general training in clinical reasoning. The interventions in this domain are presented in table 2.

Improve intuitive processing: debiasing
Many, and perhaps most, medical diagnoses are derived intuitively, acknowledging that most conditions are common and present in typical, easily recognised, fashion. Coderre et al found that intuitive diagnoses are more likely to be correct compared with diagnoses derived by hypothetico-deductive reasoning, and this concept is also consistent with the substantial literature regarding expertise.

Experts in the field of naturalistic decision-making emphasise that intuitive judgements cannot be taught because they emerge subconsciously from the amassed experience of the decision-maker and his or her ability to access this knowledge instantaneously and effectively. However, others have argued that intuition can be encouraged, strengthened and improved. Brawn highlighted several strategies to encourage use of intuition such as showcasing examples of how intuition was used in discovery and insight situations. Noddings and Shore suggest that intuition can be developed by first acknowledging intuition and its role in decision-making, demonstrating its capacity and successes, and by sharing how intuition is used, especially by experienced role models. Hogarth recommends a series of novel educational interventions to teach and improve intuition, including creating increased motivation to learn by exposure to one’s own errors and constantly seeking to improve one’s learning skills by reviewing and revising skills in observation, sense-making and hypothesis testing.

Croskerry and others have argued that clinicians would make fewer errors if they learned the potential shortcomings (biases) of intuitive decision-making so as to understand and avoid them. Interventions to avoid both affective bias (engendered by our inherent discomfort with certain types of patients or interactions) and cognitive bias (due to the known shortcomings and pitfalls of subconscious thought) have been suggested.

Similar debiasing interventions were suggested by Fischhoff and included: (1) warning about the possibility of bias; (2) describing how the bias distorts good decisions; (3) letting the individual make a bias-related judgement error and giving them feedback; and (4) repeating these cycles with extended coaching. Larrick reported an example of successful debiasing by keeping it focused on a particular context and a particular bias.

Experimental evidence suggests that hindsight bias can be reduced by considering alternatives. In one such study, subjects were asked to choose between two answers to a difficult question, where some were asked to give the reasons they made their choice and others were asked to give reasons both for and against their choice. Considering both alternatives improved accuracy and reduced the tendency for subjects to be over-confident in their answers. Similarly, physicians evaluating a difficult test case were more likely to trust a diagnosis when asked to consider alternatives.

Although debiasing is potentially attractive, several authors have expressed scepticism if this approach will work based on the intrinsic difficulty of changing the subconscious processing individuals use in decision-making.
Improving metacognition and reflection

Improving metacognition, the ability to reflect on one’s own thought processes, is an appealing approach to reduce cognitive error. Metacognition could potentially alert clinicians to possible flaws in their reasoning and help detect errors. A related and widely endorsed recommendation is to practice reflectively. Reflective practice promotes metacognition and incorporates four distinct elements: Seeking out alternative explanations, exploring the consequences of alternative diagnoses, being open to tests that would differentiate the various possibilities and accepting uncertainty. This process, essentially getting a second opinion from your own conscious mind, has the potential to avoid many of the inherent pitfalls of heuristic thought.

Several tools have been suggested that might be helpful to promote metacognition and reflective practice, including Trowbridge’s ‘12 Tips’ and Leonidas’ ‘Ten Commandments’. Using a diagnosis checklist, by prompting conscious review and reflection, has also been advocated as a way to avoid pitfalls in clinical reasoning.

Interventions

Our search yielded two studies. Sherbino and colleagues tested an effort to improve clinical reasoning of trainees by teaching them cognitive forcing strategies to counteract biases. The study lacked baseline data (no measure prior to intervention) or a control group, and the results were generally negative. In addition, the reported retention of the cognitive forcing strategies that were the subject of the intervention was short-lived. Eva et al encouraged the use of combined strategies (pattern recognition plus deliberate consideration) in teaching students to read electrocardiograms (ECG), and found this improved their diagnostic performance in part by avoiding biases.

Interventions

Our search yielded one study that tested an intervention in this category. Wolpaw et al attempted to improve clinical reasoning and decision-making skills through a six-step training programme for medical students to express their diagnostic reasoning process. The impact of this technique on diagnostic errors is inconclusive since the study did not assess the reduction of diagnostic errors, but only assessed frequency and thoroughness of their skills in presenting a patient case. The study only measured the presence/amount of reasoning and not accuracy thereof, and so it is unclear how this intervention would improve diagnostic accuracy.

Improve rational processing

Rational, deliberate review and consideration combine the use of evidence-based knowledge with two normative approaches, the use of expected value decision-making to choose among a group of possible diagnoses and Bayesian analysis to incorporate test results in considering a single diagnosis. Kassirer et al describes the process of clinical reasoning as generating initial hypothesis which are then investigated by diagnostic tests and Bayesian analysis until an appropriate threshold (Treat, Don’t Treat) is reached. Kassirer suggests that the essential skills of clinical reasoning can and should be taught to medical students from their first days, and reviewers have concluded that conscious review can be taught effectively. Trainees taught

Consider alternatives

A central element of reflective practice is reviewing alternative diagnoses, an approach widely endorsed as a valid approach to improved decision-making which we consider separately in this section. In this approach, clinicians should invoke what has been called the universal antidote, ‘Could this be something else?’ and use appropriate tests to exclude the alternatives, rather than ordering tests that simply confirm original suspicions. Others have also suggested that clinicians ‘jot down, in advance, outcomes that would support one’s initial conclusions and also those that would disconfirm them’ or consider alternatives. A related strategy is to assume the perspective of an outside observer, prompting evaluation of the decision-making strategy that was used and whether or not it was flawed. Military planners have used ‘prospective hindsight’ to teach this principle: one looks into the future to see that the working diagnosis is not correct: What was missed and what else should have been considered?

Interventions

Our search yielded two studies. Sherbino and colleagues tested an effort to improve clinical reasoning of trainees by teaching them cognitive forcing strategies to counteract biases. The study lacked baseline data (no measure prior to intervention) or a control group, and the results were generally negative. In addition, the reported retention of the cognitive forcing strategies that were the subject of the intervention was short-lived. Eva et al encouraged the use of combined strategies (pattern recognition plus deliberate consideration) in teaching students to read electrocardiograms (ECG), and found this improved their diagnostic performance in part by avoiding biases.
principles of evidence-based medicine are more likely to use Bayesian techniques to interpret clinical findings. In efforts to reduce surgical cognitive errors, Brannick et al. oriented surgical trainees to Reason’s major error types using an educational video and role-playing emphasising errors. Although actual surgical error rates were the same as in untrained controls after a month, attention to detail improved.

Category 2 summary
We noted a major discrepancy between the breadth and enthusiasm for these interventions in the background studies, but a paucity of actual interventions. For all three categories, there is very limited evidence addressing diagnostic accuracy or errors. The studies identified involved trainees in laboratory-like settings, limiting the ability to generalise the findings to real practice.

3) Get help: use other people and decision support tools
Given the constraints of human cognition, physicians may be able to augment their innate cognitive abilities by obtaining advice and help from others. All of the tested interventions in this category are detailed together in online appendix C and were organised in the following categories.

Second opinions

Interventions
Several studies have demonstrated that second reviews of surgical pathology or cytology specimens find a small but important group of errors, and a growing number of healthcare systems now require second readings in case types known to have substantial rates of inter-observer variability. Most of these studies do not, however, include data on patient outcomes (table 3).

Second readings in radiology also improve test sensitivity. Duijm et al. found that multiple independent readers (radiologists or technicians) increased cancer detection rates with only a slight decrease in specificity, and Kwek et al. found that second reading increased cancer detection by 5%.

The impact of second readings has been mixed in other settings. Second reading of Emergency Room (ER) imaging studies was helpful in one study, but in another, besides identifying previously missed abnormalities, the second reading introduced new misinterpretations leading to inappropriate changes in management. Canon et al. measured the impact of independent double reading of barium enemas and found no effect on the sensitivity of polyp detection and an increased rate of false positives.

Thus, the overall impact of ‘second opinions’ on diagnostic errors appears to be mixed. Sensitivity appears to improve in most but not all studies, but the second readings tend to introduce new errors that detract from the specificity of the diagnostic test. Results could potentially be both reliable and generalisable because of the relatively large number of cases reviewed in these studies, and the use of expert reviewers. Cost–benefit analyses will be needed to determine whether the costs of second readings and the seemingly inevitable increment in false positives are offset by the increased rate of case finding.

Groups and librarians
Groups can make better decisions than its individual members if the members are allowed to function independently. Diagnosing challenging cases within teams or with peers would take advantage of this strategy. A recent novel approach leverages the use of librarians who are experienced and skilled in identifying information, evidence, and knowledge relevant to diagnostic alternatives or testing strategies.

Interventions
One study by Christensen et al. studied team-based decisions. This was a well designed, controlled study, but the results were negative: performance did not improve by using the team.

A randomised trial of embedded clinical informaticians at one university demonstrated a positive impact on the clinical care provided, although self-reported perceptions were used in place of actual outcomes.

Decision support
Most studies of decision support tools have evaluated impact on process measures, user satisfaction and utility in a limited sense and are not consistently positive. A systematic review of decision support systems in 1998 identified only a single study focusing on diagnosis, and in this study, using a decision support tool in an emergency room on patients with joint or bone injuries actually led to more missed fractures.

Using linear prediction models (actuarial decision-making, algorithms) has been shown to yield better ‘decisions’ than most decision-makers, including experts, in a wide range of settings. Wedding and colleagues report that actuarial diagnosis was more accurate than clinical judgement in patients with neuropsychiatric conditions. However, clinicians tend to disregard advice from these tools or not use them even when they are readily available. The importance of embedding decision support in the physician’s workflow has been repeatedly emphasised, for example, by incorporating decision support logic in computer-based order entry systems. A systematic review of this approach identified 11 controlled trials, seven of which reported improved professional practice on ordering diagnostic tests.
Hamm and Zubialde and more recently Schiff and Bates have called attention to many other ways in which the electronic medical record can enhance clinical reasoning.102, 142 Besides providing clear access to the necessary data, good records help clinicians organise their thoughts, enhance collaborative thinking, enhance efficiency and promote feedback. Another promising type of clinical decision support enabled by electronic records is the graphic display of timeline data to assist in the interpretation of diagnostic test results and to help detect subtle trends.137

Interventions

A recent review identified 10 newer studies, each focused on a specific clinical condition135 and of these only four studies had positive results: one reported improved ability to detect and diagnose mood disorders in outpatients,136 two improved diagnosis in acute coronary syndromes36, 37 and one evaluated diagnosis of acute abdominal conditions on a surgical service, which improved provider performance but not patient outcomes38 (table 4). Finally, De Simone \textit{et al}89 describe a system that receives clinical information from the patient directly and synthesises that information to aid the clinician in diagnosing the cause of headaches. Overall, the studies were all sound and results seem to be generalisable by virtue of testing a range of subjects and case types.

Another approach to supporting the diagnosis of specific conditions in general is the Infobutton functionality, described by Cimino.40 The only available study of Infobuttons included subjects from varying levels (attending physicians, residents, medical students, nurses) who were mostly satisfied with the tool. The impact of the tool on diagnostic accuracy and patient outcomes was not assessed.

Computer-aided detection systems

Interventions

Five studies have examined the use of computer-aided detection systems to aid radiologic diagnosis. Peldschus \textit{et al}165 studied the effectiveness of an automated computer-aided detection system for chest CT studies and found both new positives and false positives. Berbaum \textit{et al}166 demonstrated a significant beneficial effect of using computer-aided diagnosis support to help analyse chest radiographs.

In mammography, Jiang \textit{et al}168 found that computer-aided diagnosis reduced inter-observer variability, but in another study computer-assisted mammography interpretation had no beneficial effects on cancer detection and significantly increased the false positive rate of the studies and the biopsy rate.169 A recent commentary on computer-assisted detection noted that while use of this technology is increasingly the norm, the jury is still out on its utility.170 All of the intervention studies reviewed were solid in design and in the interpretation of the results and conclusions, but the ability to generalise is limited due to studies in just two domains (chest x-rays and mammograms).

Computer-aided interpretation systems

Interventions

Two studies focused on technology to improve ECG interpretation. Daudelin and Selker171 reported using an ECG-based acute cardiac ischaemia predictive instrument to improve triage decision-making in the ER. Olsson \textit{et al}172 studied the use of an artificial neural network trained to automatically detect ECGs indicating possible transmural ischaemia and found that this decision support tool was effective in improving inexperienced interns’ interpretation of ECGs.

General decision support tools for medical diagnosis

Computer aided decision support tools have also been developed to assist specifically with differential diagnosis. Anecdotally these tools succeed, in a small fraction of searches, in suggesting a difficult or obscure diagnosis that was previously missed. The clinician inputs the patient’s key findings, and these programmes suggest possible diagnoses. Some programmes help refine these choices by further suggestions of questions to ask, findings to look for or tests to perform. Berner \textit{et al} evaluated the first generation products (QMR, DXplain, Iliad and Meditek) using test scenarios and all the products were effective in providing useful suggestions.173 However, the correct diagnosis appeared on the suggestion list only half to three-fourths of the time, and all of the programmes generated a large number of extraneous conditions.174 Some of these initial products are no longer available, although DXplain has been maintained and updated.

Interventions

Of the many newer web-based decision support tools, ‘ISABEL’ has been the most extensively evaluated. Compared with first generation tools, ISABEL displays much improved sensitivity in both paediatric settings41 42 and in analysing adult case scenarios, in which the sensitivity approached 100\%.43–45 ‘Google’ searching has also been evaluated in medical settings, but suggests the correct diagnosis in only 58\% of difficult cases.46

Category 3 summary

Overall, the technique of ‘getting help’ during the diagnostic process may be beneficial. The use of decision support resources has been studied more extensively
than any other intervention, and these approaches, if used, show promise in their potential to reduce diagnostic errors. More research is needed regarding the use of second reviews, teams and librarians.

DISCUSSION

Reducing harm from diagnostic errors requires interventions to improve the cognitive processes that underlie clinical reasoning. We identified a reasonably large literature on potential interventions and organised these interventions into three categories: (1) Increasing knowledge and expertise, (2) Improving intuitive and deliberate consideration and (3) Getting help from colleagues, consultants and tools.

We found that most interventions in the literature were simply ideas or suggestions. Many of these are well conceptualised and widely endorsed, and seem ripe to be tested in experimental or real-world clinical settings. A major finding in each of the three categories was a large discrepancy between the broad and enthusiastic recommendations for the various interventions, but a relative paucity of actual trials. Of the few studies that reported true interventions, few included robust designs or metrics. Typically, the interventions involved an observational study design and measured outcomes before and after an intervention with a small number of trainees or clinicians and/or healthcare sites, without a control group.

Our findings also affirm that the science of outcome measurement in this area is underdeveloped. Educational interventions in particular are difficult to evaluate in terms of changing attitudes and behaviours in practice. One major issue is the difficulty of demonstrating that diagnosis can be improved by any approach in real-world settings. Definitions of diagnostic error are not standardised and error designations are typically subjective judgements, often confounded by hindsight bias. Measurement instruments and methods to evaluate cognitive intervention effects are not well developed. Additionally, because diagnostic error reflects the interplay of system-related and patient-dependent factors, the true effect of a purely cognitive intervention might be difficult to ascertain. All of these factors pose challenges in the design of future interventions in this area.

The major limitation of this review is the likelihood that we overlooked conceptual ideas to improve decision-making from both medical and non-medical fields. Medical diagnosis is essentially a special case of decision-making under conditions of uncertainty, and ideas for improving these decisions can arise from almost any discipline, including the social sciences, business fields and military scholars.

A clear challenge going forward is to identify the advances in these areas that might be applicable to improving the reliability of medical diagnosis. Despite the many shortcomings of these studies, our review identified promising ideas for reducing diagnostic error in each of the three major categories.

Increase knowledge

At the present time, disease-specific training is the only intervention that is both supported by evidence and seems implementable. In the future, simulation offers potential both in terms of teaching clinicians about diagnostic error and error-prevention strategies, as well as serving as a method to rapidly build expertise through exposure to many types of disease variants. Feedback also offers the potential to reduce errors by helping develop expertise. Feedback is also the key to reducing overconfidence, which in turn could open the door for clinicians to appreciate the possibility of their own errors and take actions to avoid them. Deliberate feedback is embedded in many approaches that seek to improve individual and team performance outside of medicine.

Improve clinical reasoning

Although some of the interventions to improve reasoning have been successful with trainees, most have yet to be implemented or evaluated in practice. Reflective practice and active metacognitive review may have great potential to reduce diagnostic error, and the tools to promote these practices need to be further developed and evaluated in practice. These approaches expand the number of conditions to be considered and effectively address many of the major causes of cognitive error, including context errors, framing bias and premature closure. However, the cost of trade-offs is not clear. For example, will the broadened consideration of alternative diagnoses lead to inappropriate or costly testing, divert attention away from the correct diagnosis or be deleterious in another way?

Get help

Decision support for diagnosis has the unique advantage that it can be implemented at the system level, without requiring some new skill or behaviour to be learnt by clinicians. Still, clinicians need to be willing to take advantage of these resources, and error reduction will critically hinge on how well the support functionality is incorporated into everyday workflow and how clinicians will deal with the specificity problem. Using informaticians, working more effectively in groups, taking full advantage of the comprehensive electronic health record and relying more on actuarial tools (algorithms) may be effective strategies. Second opinions and
consultations bring fresh eyes to examine a case, a powerful and effective way to find and correct diagnostic errors.

CONCLUSIONS

In conclusion, there is a surprisingly wide range of possible approaches to reducing the cognitive contributions to diagnostic error. Not all the suggestions have been tested, and of those that have, the evaluations typically involved trainees in artificial settings, making it difficult to extrapolate the results to actual practice.

The field is immature and progress in reducing diagnostic error will require considerable research to evaluate the relative merits of these different ideas, refinements in the methodology of defining and measuring outcomes in preventing diagnostic error and harm, and leveraging advances in other aspects of medical decision-making and cognitive sciences that may make medical diagnosis more reliable.

Author affiliations

1. VA Medical Center, Northport, New York, USA
2. Department of Medicine, SUNY Stony Brook, New York, USA
3. RTI International, Research Triangle Park, North Carolina, USA
4. School of Biomedical Informatics, University of Texas Health Science Center in Houston, Houston, Texas, USA
5. National Center for Cognitive Informatics and Decision Making in Healthcare, University of Texas Health Science Center in Houston, Houston, Texas, USA
6. Houston VA HSR&D Center of Excellence, and the Center of Inquiry to Improve Outpatient Safety Through Effective Electronic Communication, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
7. Section of Health Services Research, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
8. Center for Quality Improvement and Patient Safety, Agency for Healthcare Research and Quality, Rockville, Maryland, USA

Acknowledgements We gratefully acknowledge administrative and literature research assistance from Ms Grace Garey, Mary Lou Glazer, Diane Martin and Wendy Isser.

Contributors All listed authors contributed to the conception and design, or analysis and interpretation of data; drafting the article or revising it critically for important intellectual content; and final approval of the version to be published. MLG is the guarantor, contributed to the study design, contributed to data synthesis, wrote the paper and coordinated revisions. SK performed the analytical and interpretive data; drafting the article or revising it critically for important intellectual content; and final approval of the version to be published.

Funding This study was funded by the Agency for Healthcare Research and Quality (AHRQ) ACTION II Task Order #8, Contract No. HHSAG290200600001 and in part by the Houston VA HSR&D Center of Excellence (HFP90-020).

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES

10. Barr H, Freeth D, Hammick M, et al. Evaluating the relative merits of these different ideas, refinements in the methodology of defining and measuring outcomes in preventing diagnostic error and harm, and leveraging advances in other aspects of medical decision-making and cognitive sciences that may make medical diagnosis more reliable.

10. Barr H, Freeth D, Hammick M, et al. Evaluating the relative merits of these different ideas, refinements in the methodology of defining and measuring outcomes in preventing diagnostic error and harm, and leveraging advances in other aspects of medical decision-making and cognitive sciences that may make medical diagnosis more reliable.

REFERENCES

10. Barr H, Freeth D, Hammick M, et al. Evaluating the relative merits of these different ideas, refinements in the methodology of defining and measuring outcomes in preventing diagnostic error and harm, and leveraging advances in other aspects of medical decision-making and cognitive sciences that may make medical diagnosis more reliable.

REFERENCES

NARRATIVE REVIEW

The Black Swan

100. Noddings S, Shore PJ. Awakening the Inner Eye: Intuition in

101. Quirk M. Intuition and Metacognition in Medical Education. New York,

102. Hammad R, Zubiade J. Physicians’ expert cognition and the problem

103. Crooksey P. The cognitive imperative: thinking about how we think.

104. Leonidas L, Trenk Mann B. Learning to reduce cognitive errors. In:

105. Gawande A. The Checklist Manifesto: How to Get Things Right. 1st

106. Elwood JW, Graber ML, Crooksey PC. Checklists to reduce diagnostic

109. Arkes H. Why medical errors can’t be eliminated: uncertainties and

110. Schwenk CR. Cognitive simplification processes in strategic

University Press.

112. Mitchell DJ, Russo JE, Pennington N. Back to the future: temporal

113. Mussoiweiler T, Strack F, Pfeiffer T. Overcoming the inevitable
anchoring effect: considering the opposite compensates for

116. Gorman M, Gorman M. A comparison of disconfirmation,
confirmatory and control strategies on Watson’s 2-4-6 task. Q J Exp

117. Hirt E, Markman K. Multiple explanation: a consider-an-alternative

118. Mumma G, Steven W. Procedural debiasing of primary/

122. Khan KS, Coomarasamy A. A hierarchy of effective teaching and

123. Crooksey P. Clinical cognition and diagnostic error: applications of a

124. Ullman DG. Making Robust Decisions: Decision Management for
Technical, Business, and Service Teams. Victoria, BC: Trafford

125. Pauker SC, Kassirer JP. The threshold approach to clinical decision

127. Tatarka CJ. Overcoming biases in military problem analysis and
decision-making. Mil Intelligence 2002;28:8–10.

128. Raab SS. Improving patient safety by examining pathology errors.

129. Zipperer L, Sykes J. The role of librarians in patient safety: gaps

130. Albert KM. Integrating knowledge-based resources into the
electronic health record: history, current status, and role of

131. Zipperer L, Sykes J. Engaging as partners in patient safety: the
experience of librarians. Patient Saf Qual Healthc. March/April

132. Wedding D. Comparison of statistical and actuarial models for

133. Hunt DL, Haynes RB, Hanna SE, et al. Effects of computer-
based clinical decision support systems on physician performance

134. Klasson TP, Ropponi J, Smitifl T, et al. A randomized controlled trial
of radiographic operating for extremity trauma in a pediatric emergency

clinical decision support systems on practitioner performance

136. Cannon DS, Allen SN. A comparison of the effects of computer
and manual reminders on compliance with a mental health

137. Radecki RP, Medow MA. Cognitive debiasing through sparklines in

comprehension and medical decision making. Psychol Bull 2009;
103:943–73.

139. Bhandari G, Hassanein K, Deavers R. Debiasing interventions with
decision support systems: an experimental investigation. Decis

140. Cook MB, Smallman HS. Human factors of the confirmation bias in
intelligence analysis: decision support from graphical evidence

141. Kawamoto K, Lobach DF. Clinical decision support provided within
physician order entry systems: a systematic review of features
effective for changing clinician behavior. AMIA Annu Symp Proc

142. Schiff G, Bates DW. Can electronic clinical documentation help

143. Norman G. Building on experience—the development of clinical

145. Ericsson KA. Deliberate practice and acquisition of expert

146. Norman G. Research in clinical reasoning: past history and current

147. Bordage G. Why did I miss the diagnosis? Some cognitive
explanations and educational implications. Acad Med 1999;74:
S138–43.

148. Lee JK. Quality—A radiology imperative: interpretation accuracy and

149. Wood D. An Intervention for Diagnostic Overshadowing [e-book].

556

Cognitive interventions to reduce diagnostic error: a narrative review

Mark L Graber, Stephanie Kissam, Velma L Payne, et al.

doi: 10.1136/bmjqs-2011-000149

Updated information and services can be found at:
http://qualitysafety.bmj.com/content/21/7/535.full.html

These include:

Data Supplement
“Supplementary Data”
http://qualitysafety.bmj.com/content/suppl/2012/06/18/bmjqs-2011-000149.DC1.html

References
This article cites 140 articles, 25 of which can be accessed free at:
http://qualitysafety.bmj.com/content/21/7/535.full.html#ref-list-1

Article cited in:
http://qualitysafety.bmj.com/content/21/7/535.full.html#related-urls

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/